
June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

International Journal of Software Engineering and Knowledge Engineering
c©World Scientific Publishing Company

PROCEDURES AND ALGORITHMS FOR CONTINUOUS INTEGRATION IN
AN AGILE SPECIFICATION ENVIRONMENT

MARTÍN LÓPEZ-NORES, JOSÉ J. PAZOS-ARIAS, JORGE GARCÍA-DUQUE, YOLANDA
BLANCO-FERNÁNDEZ, REBECA P. DÍAZ-REDONDO, ANA FERNÁNDEZ-VILAS, ALBERTO

GIL-SOLLA and MANUEL RAMOS-CABRER
Department of Telematics Engineering, University of Vigo

ETSE Telecomunicación, Campus Universitario s/n, 36310 Vigo (Spain)
mlnores@det.uvigo.es
jose@det.uvigo.es
jgd@det.uvigo.es

yolanda@det.uvigo.es
rebeca@det.uvigo.es
avilas@det.uvigo.es
agil@det.uvigo.es

mramos@det.uvigo.es

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

One of the main ideas of agile development is to perform continuous integration, in order to detect and
resolve conflicts among several modular units of a system as soon as possible. Whereas this feature is
well catered for at the level of programming source code, the support available in formal specification
environments is still rather unsatisfactory: it is possible to analyze the composition of several modu-
lar units automatically, but no assistance is given to help modify them in case of problems. Instead,
the stakeholders who build the specifications are forced to attempt manual changes until getting to
the desired functionality, in a process that is far from being intuitive. In response to that, this paper
presents procedures and algorithms that automate the whole process of doing integration analyses and
generating revisions to solve the diagnosed problems. These mechanisms serve to complete an agile
specification environment presented in a previous paper, which was designed around the principle of
facilitating the creative efforts of the stakeholders.

Keywords: Formal specification; agile software development; continuous integration.

1. Introduction

The term agile development in software engineering refers to methodologies in which hu-
mans make frequent small changes to a system description, and where the continuous anal-
ysis of what has been done is the key to increase the knowledge about the desired system
and advance its development [1, 5]. Many case studiesa have proved that the principles of
agility contribute to enhancing the productivity of programming tasks. Knowing that, there

aA growing list can be found at http://www.agilejournal.com, section “Case studies”.

1

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

2 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

is a growing trend towards adopting the agile approach in formal specification settings, ei-
ther for requirements engineering and modeling [3] or as a supplement to the programming
itself [4, 21]. However, the approaches presented thus far in the field of agile formal meth-
ods [6, 8, 9, 11, 24, 33, 34, 37] merely focused on adopting some of the recommended best
practices of agile programming methodologies (mainly those of eXtreme Programming),
paying little or no attention to many important technical features.

In [19], we identified some of the technical flaws of agile formal methods, and in-
troduced solutions with a twofold objective: to facilitate the creative work of developing
formal specifications, and to deal effectively with changeable specifications. In this paper,
we tackle an unresolved question related to one of the core ideas of agile development: con-
tinuous integration (CI). As explained in [13], CI is about analyzing the functionality that
results from composing several modular units of a system, to detect and resolve problems as
soon as possible. It is well known that the correctness of a system is not guaranteed by the
correctness of its parts, considered in isolation; rather the opposite, the interactions among
different functional features lead to the so-called emergent behavior, which can only be
observed and analyzed over the composition of those parts [23, 28]. Thereby, a suitable de-
velopment methodology should allow analyzing compositions and, in case some problems
are detected, provide support for modifying the components involved.

When it comes to programming source code, the support available for CI is improv-
ing daily, with mechanisms like automated builds and self testing. In contrast, the support
available in formal specification is rather deficient. On the one hand, many of the previous
works on agile formal methods do not even allow organizing a specification in components,
which forces the stakeholders to handle complex artifacts that gather all the functional fea-
tures of a system. On the other hand, the few approaches that support modularization only
inform the stakeholders of whether a specification passes or fails the integration analyses;
thus, locating the source of the problems and modifying the composed units remains an
entirely manual task, which is not intuitive at all. Out of the agile wave, we only find better
support in [18, 29, 32], where some mechanisms were introduced to automatically evaluate
changes at the composition level that would solve the problems detected in the analyses.
As shown in Fig. 1, given a system S that results from composing C1, . . . , Cn, those mech-
anisms would be able to generate a revised version S rev that solves any problems detected
over S. Unfortunately, there is no support to automatically modify the original C 1, . . . , Cn

so that their composition yields S rev . Neither is there an answer to whether the changes
made over S could require introducing new modular units.

These limitations (which we refer to as the effective loss of modularization) represent
an important shortcoming in agile development, because they prevent CI. Indeed, the stake-
holders have to choose between three equally bad alternatives:

(1) Not to do integration analyses until the modular units have been fully developed, which
may lead to discovering errors late and, thereby, to significant increases in time and
cost.

(2) To do integration analyses once, and then continue developing the system as a mono-
lithic whole, with null separation of concerns.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 3

C1 . . . Cn

S Srev

C?
1 . . . C?

n ?

revision

analysis

Figure 1. The effective loss of modularization after integration analysis.

(3) To do integration analyses often, attempting costly manual changes every time to main-
tain the modularization.

In this paper, we define the means to adequately support CI in formal specification en-
vironments, allowing the stakeholders to do integration analyses as often as they need, with
the maximum automated support. To this aim, we define procedures that solve the effec-
tive loss of modularization, automating the whole process of doing integration analysis and
translating any changes made to the composition into modifications of the components in-
volved, or into new modular units if so preferred by the stakeholders. These procedures are
introduced in general terms in Section 2. Then, following the introductory background of
Section 3, we instantiate the proposal in Section 4 over specific formalisms, and use them to
exemplify our approach to CI in Section 5. We discuss the results of practical experiments
in Section 6, and the paper finishes with a summary of conclusions in Section 7.

2. Continuous Integration in Agile Formal Specification

The methodology of [19], which is the context for our approach to CI, was designed to
help stakeholders develop requirements specifications in an iterative fashion, getting guid-
ance from correctness checks performed during the intermediate stages. There, for the sake
of generality, we considered a broad notion of software component, combining a set of
requirements (e.g. expressed in temporal logic), a set of operational models (e.g. Kripke
structures or labeled transition systems) and a set of scenarios (e.g. message sequence
charts). Such a component will be hereafter represented as in Fig. 2.

C

Req(C) = {R1,R2, . . .}
Mod(C) = {M1,M2, . . .}
Sce(C) = {E1, E2, . . .}

Figure 2. Notation for components.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

4 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

As shown in Fig. 3, development in [19] was posed as a cycle with two phases:

Diagnos
tic information (∆)

Requirements, properties, scenarios

Fee
dba
ck

Revisio
n sug

gest
ion
s

Analysis
C

Req(C)
M

Sce(C)

Synthesis

Verification

Validation

Revision
Crev

Req(Crev)
Mrev

Sce(Crev)

Modification
of properties
and scenarios

Figure 3. The approach of [19] for an agile analysis-revision cycle.

• In the Analysis phase, an operational model of the current specification is used to per-
form certain correctness checks, including (i) the synthesis of the model itself from
the requirements, (ii) the verification of desirable safety or liveness properties through
model-checking, and (iii) validation through manual inspection or against usage sce-
narios. In all cases, we gather diagnostic information for the problems detected, with
each piece pointing out possible ways to alter parts of the model.

• The Revision phase uses the diagnostic information to automatically derive possible
evolutions of the requirements, properties and scenarios provided by the stakeholders.
If those evolutions solve (at least, partially) some of the problems, they are later pre-
sented to the stakeholders as revision suggestions, that they can accept, reject or ignore.
The methodology learns from the stakeholders’ decisions, maintaining a knowledge
base to avoid insisting on unwanted solutions.

With the mechanisms presented in [19], we solved the problem of transforming a com-
ponent C that did not pass a given analysis into a revised component C rev which does. In
Fig. 1, therefore, we can already take the step from S to S rev . What is missing is a way
to present the changes to the stakeholders that overcomes the effective loss of modular-
ization. Prior to explaining our proposal in this regard, we must introduce a novelty in the
characterization of the specifications.

When managing modular specifications, it is important to note that compositionality
stems from the operational models, as it is possible to define operators that, given models
of the functionality of several components, return a model of their conjoint functionality.
The same is not true for requirements, because joining those of several components does
not yield a set of requirements for their composition —specifically, there would be no

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 5

requirements specifying the emergent behavior. From this observation, we introduce here
a distinction between two types of components, which is illustrated in Fig. 4:

Op

C1

Req(C1) = {RC1
1 ,RC1

2 , . . .}
Mod(C1) = {MC1

1 , . . . ,MC1
jMC1
jMC1
j , . . .}

Sce(C1) = {EC1
1 , EC1

2 , . . .}

C2

Req(C2) = {RC2
1 ,RC2

2 , . . .}
Mod(C2) = {MC2

1 , . . . ,MC2
kMC2
kMC2
k , . . .}

Sce(C2) = {EC2
1 , EC2

2 , . . .}

S

Req(C1) ! Req(C2)

MS
jk

Sce(C1) ! Sce(C2)

C1

Req(C1) = {RC1
1 ,RC1

2 , . . .}
Mod(C1) = {MC1

1 , . . . ,MC1
jMC1
jMC1
j , . . .}

Sce(C1) = {EC1
1 , EC1

2 , . . .}

C2

Req(C2) = {RC2
1 ,RC2

2 , . . .}
Mod(C2) = {MC2

1 , . . . ,MC2
kMC2
kMC2
k , . . .}

Sce(C2) = {EC2
1 , EC2

2 , . . .}

Figure 4. White box and gray box components.

• We call white box any component whose functionality is completely determined by
a set of requirements provided by the stakeholders. That set can be generally imple-
mented by multiple operational models, though only one is usually handled (by default,
the simplest one according to some criterion) [20, 35]. Components C 1 and C2 in Fig. 4
are white boxes, just like the components we considered in [19].

• We call gray box any component whose functionality is represented by models which
are not directly obtained from requirements provided by the stakeholders, but rather
by composing or transforming other models. Nonetheless, the component contains re-
quirements that specify part of that functionality, hence we do not talk of black boxes
—that name would be applied to models which do not relate to requirements provided
by the stakeholders (for instance, because they were constructedmanually, or they have
been reused without retrieving the requirements from which they were generated).

Figure 4 represents the gray box S that results from composing the j-th model of
C1 and the k-th one of C2 by means of a certain operator Op. The ! symbols denote
some operation between the sets of requirements and scenarios of C 1 and C2, whose
result generally depends of the selected models and the composition operator itself.

Having said that, we are already in the position to explain our approach to CI. Given
a composition S = C1 . . . Op . . . Cn, the integration analysis is done over an operational
model of S. In case of problems, we use the diagnostic information to obtain a revised
model that passes the analysis, and put it into a gray box S rev . Finally, when it comes
to discharging the changes implied by the transformation of S into S rev over the original
modularization, we consider the two possibilities of Fig. 5:

(1) The first option is to discharge the changes entirely over some or all of the original
components, to obtain revised components C rev

1 , . . . , Crev
n that jointly bear the func-

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

6 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

C1 . . .Op . . .
Cn

S

Crev
1 . . . Op′ . . .

Crev
n

Srev

C1 . . . Op . . .
Cn

S ←∗ A

Srev

Figure 5. Possibilities to discharge the changes done at the composition level.

tionality of Srev . To this aim, the model of S rev is split into modified versions of the
models of C1, . . . , Cn that bore the original model of S. This process generally leads to
greater coupling between the components, which is illustrated in Fig. 5 in the change
of the composition operatorOp forOp ′. Next, we modify the requirements and scenar-
ios of C1, . . . , Cn to reflect the changes made to their models, considering the evolution
types defined in [19]. In doing so, if the original components were white boxes, the re-
vised ones can be characterized as gray ones, because part of the functionality of some
Cj may become dependent on the functionality of another C k.

(2) The second option is to introduce as a new component that, combined with the compo-
sition of the original C1, . . . , Cn, bears the functionality of S rev . The new component
captures the crosscutting concerns that drive the integration analysis, and so we call it
an aspect (hence theA in Fig. 5). Within this vision, we proceed by splitting the model
of Srev into two parts, one of which must be equal to the original model of S; the other
is put into a gray box forA. The original components remain unchanged, and the same
happens with the way they were composed.

In any of the two options, the changes implied by the model of S rev over the original
model of S are translated into specializations of any scenarios that were being considered at
the composition level, applying follow-upmechanisms like the ones introduced in [26, 36].
The scenarios play an important role in CI, because their most common use it precisely to
capture interactions between several modular units [15, 38].

To complete the approach to CI, the role of the analysis-revision cycle is to help the
stakeholders browse the multiple revision possibilities that may exist in a general case. The
scheme we propose to achieve this goal is analogous to the one we presented in [19]: an

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 7

iterative procedure that prioritizes the simplest alternatives (even to the point of implying
partial solutions to some of the diagnosed problems) and that learns from the interaction
with the stakeholders. Importantly, it is always up to the stakeholders to select which option
to use when discharging the changes from integration analysis. It will be clear from the
example of Section 5 that the different possibilities of Fig. 5 lead to different views of the
revised system and its components, and we want the stakeholders to handle the artifacts
that make it easier for them to go on with the specification tasks.

3. Background on the SCTL-MUS Methodology

In Section 4, we shall explain how to implement our approach to CI in SCTL-MUS, a for-
mal specification methodology introduced in [25], and enhanced later in [19] to adopt an
agile approach. Prior to that, we provide some background on SCTL-MUS to help under-
stand the posterior procedures and algorithms. Further details can be found in our previous
publications.

3.1. The requirements

The requirements are expressed in a temporal logic called SCTL (Simple and Causal Tem-
poral Logic), which allows stating conditions about the enabledness of the events that
may occur during the operation of a system. The requirements follow the causal pattern
Premise

⊕
Consequent, with the symbol

⊕
representing one temporal operator from

the set {⇒,⇒ ©,⇒
⊙

}, to be interpreted as follows:

If Premise is satisfied, then [simultaneously (⇒) | immediately after (⇒ ©) | imme-
diately before (⇒

⊙
)] Consequent must be satisfied.

In addition to temporal operators, the requirements may include the logical connectives
AND (denoted by ∧), OR (∨) and NOT (¬).

3.2. The operational models

The operational models are expressed in a sort of state-machine formalism called MUS
(Model of Unspecified States), a variant of the classical Labeled Transition Systems [22]
prepared to model systems whose specification has not been completed yet. Thus, given
a set of SCTL requirements, the synthesis algorithm presented in [25] generates a MUS
model containing (i) possible transitions through the events specified as true, (ii) non-
possible transitions through the events specified as false, and (iii) unspecified transitions
corresponding to events not yet affected by the requirements (⊥).

Formally, a MUS model is a tripleM = (SM, Λ,→) with SM a set of states, Λ a set
of events (an alphabet), and → ⊆ SM × Λ × SM × L3 a transition relation. A generic
element of this relation, denoted by (si, a, sj , v) or si

{a,v}−−−→ sj , indicates a transition from
state si into state sj through event a, whose enabledness is given by the value v ∈ L 3 =
{false,⊥, true}. The set of states SM includes a fixed one, called the unspecified state and
denoted by sunsp, that captures all the not-yet-specified states and transitions of the model.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

8 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

Example 1. Figure 6 shows a MUS model whose alphabet is Λ = {a, b}. From the initial
state of this model, it is possible to transition into s2 through the event a (s1[a]M = true),
whereas b is not allowed to occur (s1[b]M = false). In state s2, a is an unspecified event
(s2[a]M = ⊥), but event b is possible (s2[b]M = true) and takes the model back to s1.

s1
b

s2

ab

Figure 6. A sample MUS model.

Notation

• The initial state of a MUS graph is denoted by s1.
• Possible transitions si

{a,true}−−−−−→ sj are represented by an a-labeled arrow from s i to sj .
One example is s1

{a,true}−−−−−→ s2 in Fig. 6; s2 is called the a-successor of s1.
• Unspecified transitions (like s2

{a,⊥}−−−−→ sunsp in Fig. 6) are not represented graphically.
• Non-possible transitions s

{a,false}−−−−−→ sunsp are represented by placing a symbol like
next to event a in state s. One example is s1

{b,false}−−−−−→ sunsp in Fig. 6.

3.3. The scenarios

The goal of a scenario is to capture traces of a system’s functionality by means of event
sequences. To this aim, the SCTL-MUS methodology employs a formalism called SLS
(Simple Language of Scenarios), inspired by the classical Message Sequence Charts [17]
but tailored to the characteristics of SCTL and MUS.

Every element of the sequence defined by an SLS scenario specifies an event as pos-
sible or non-possible. Following the classical notion introduced in [35], we define a ma-
terialization of an SLS scenario over a MUS model as any trace of the latter that contains
the events of the scenario in the specified order and with the specified enabledness, maybe
with occurrences of unrelated events in between.

Example 2. Figure 7(a) represents an SLS scenario that starts with event a1, after which
d1 should never occur before b1; b1 is followed by c1 and, finally, by d1. This scenario has
several materializations over theMUSmodel of Fig. 7(b), like the ones represented by thick
lines over the traces (s1, s2, s6, s10, s11, s12, s11) and (s1, s2, s6, s10, s14, s15, s16, s15).

3.4. The analysis and revision mechanisms

The forms of analysis in SCTL-MUS include the synthesis of MUS models from SCTL
requirements, the model-checking of desirable SCTL properties, and the search for ma-
terializations of SLS scenarios in MUS models. In response to any conflicts between the

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 9

t S

a1

d1

b1

c1

d1

(a)

s1 s2 s3 s4

s5

s6 s7 s8

s9
s10

s11
s12

s13 s14 s15 s16

a1

b1
c1

d1

a2

b2

c2d2

a1

b1
c1

d1

a2

b2

c2d2

a1

b1
c1

d1

a2

b2

c2d2

a1

b1
c1

d1

a2

b2

c2d2

d1

d1, d2

d1

d1

d2 d2 d2

(b)

Figure 7. A sample SLS scenario and its materializations over a MUS model.

requirements, any violations of the properties or any evidence that a model cannot contain
materializations of a scenario, we look at the computations performed to systematically
generate pieces of diagnostic information (henceforth,∆s), pointing out the undesired find-
ings in the models that were being synthesized, verified or validated (see [19] for further
details). The notation

∆i,sl = sj [a]M " δ

represents the i-th piece of diagnostic information obtained over state s l of a model, by
which the enabledness of event a in state sj (defined over the set {false,⊥, true}) should
be changed to a different value δ.

Having the diagnostic information, the revision mechanisms can identify the require-
ments that bore the behavior implemented in the problematic states. Thus, depending on the
δ values and the enabledness of the events as specified by those requirements, three types of
requirement revisions can be generated: refinements (from⊥ to false or true), abstractions
(from false or true to ⊥) and retrenchments (from false to true, or vice versa). Those revi-
sions are evaluated one after the other (starting with those that modify fewer requirements)
until finding one that solves (at least, partially) some of the diagnosed problems and gains
the stakeholders’ acceptance.

On the other hand, it is also straightforward to identify the scenarios whose material-
izations pass through the states indicated by the diagnostic information. Thus, it is easy to
generate revised scenarios, introducing events that differentiate the materializations which
are lost with the changes in the models (counterexamples) from those which are preserved
(witnesses).

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

10 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

4. New Mechanisms for Continuous Integration

When enhancing the SCTL-MUS methodology (Section 3) to implement our approach
to CI (Section 2), we focused on resolving the effective loss of modularization in cases
of parallel composition, because this is the most important construct in the field of dis-
tributed reactive systems (see [2, 7, 22, 27]). Thus, the solutions presented in this section
start up from the specification of a system S as the parallel composition of n components,
C1, . . . , Cn:

S = C1 . . . |[λ]|M . . . Cn (1)

|[λ]|M is a variation of the classical selective parallel composition operator of process
algebras [10], adapted to the many-valued semantics of MUS. In C i|[λ]|MCj , the enabled-
ness of any event a in the (model of the) composition is computed from its enabledness
in (the models of) Ci and Cj , according to the truth tables below. Considering only false
and true values, these tables coincide with the classical ones; the value ⊥ simply acts as a
neutral element, because it represents absence of knowledge.

If a ,∈ λ

Ci Cj false ⊥ true
false false false true
⊥ false ⊥ true
true true true true

If a ∈ λ

Ci Cj false ⊥ true
false false false false
⊥ false ⊥ true
true false true true

Starting from Eq. (1), as noticed in [16, 30], the goal is to remove unwanted emergent
behavior observed in the model of S. Parallel composition, in principle, interleaves the
events of the different components in an arbitrary way, but most of the times only a reduced
set of the resulting event sequences represent desired functionality. Accordingly, in order
to remove behavior, the integration analyses will always require that certain events do not
occur in certain states of the model in question, so we will be handling∆s of the form

∆i,sl = sj [a]M " false;

that is, ∆s pointing out changes of possible or unspecified transitions in the model of S
into non-possible ones.

Driven by the ∆s, as shown in Fig. 8, the revision can follow one of three procedures
to reach the model of a revised system S rev . That model is subject to the same analysis as
the original model of S, to check whether S rev must be presented to the stakeholders as a
revision suggestion or, on the contrary, it is necessary to evaluate other possibilities.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 11

Revision

1 Revision of white boxes

3 Projection to gray boxes

2 Coordination aspect

Analysis

MS ∆s

MSrev

Other revision possibilities

Revision
suggestion

Figure 8. General scheme of the support provided for CI.

The three procedures of Fig. 8 are instances of the generic ones explained in Section 2;
we detail them in the following subsections. As a common feature, just like we did in [19],
the first alternatives considered are always the simplest ones, and the stakeholders’ feed-
back is exploited to learn about unwanted evolutions of the requirements, about validated
traces that should be preserved in the models, etc.

4.1. The first discharging procedure: Revisions that preserve white boxes

The diagnostic information gathered over the model of the composition S can be used to
revise one or several of the Ci components that are white boxes, using the revision mecha-
nisms presented in [19] for individual components. For example, if we only modify com-
ponent C1, the system of Eq. (1) is reexpressed as that of Eq. (2), graphically represented
in Fig. 9:

Srev = Crev
1 |[λ′]|M C2 . . . |[λ′]|M . . . Cn (2)

C1 . . . |[λ]|M . . .
Cn

S

Crev
1 |[λ′]|M

C2 . . . |[λ′]|M . . .
Cn

Srev

Figure 9. The first discharging procedure, in the case of Eq. (2).

The set of events λ in the composition operator becomes λ ′ ⊇ λ because, as explained
apropos Fig. 5, discharging changes made at the composition level over the original com-
ponents leads to greater coupling between them—recall that, if λ = ∅, the effect of parallel
composition is that of pure interleaving (i.e. complete decoupling).

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

12 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

The key to revise white boxes lies within the fact that every state of the MUS model
of S refers directly to one state of each one of the composed models. By virtue of that, we
define the revision procedure represented in Fig. 10:

S

Req(S)
MS

Sce(S)

C1

Req(C1)
MC1

Sce(C1)

Cn

Req(Cn)
MCn

Sce(Cn)

Srev

Req(Srev)
MSrev

Sce(Srev)

MC1

MCn

Figure 10. The revision procedure that preserves white boxes.

• The changes pointed out over the model of S (s j[a]MS " false) are translated into
changes over the models of one or several C i (sk[a]MCi " false).

• Next, we generate revisions of the requirements of the C i components, applying the
mechanisms introduced in [19].

• Having revised the requirements of C i, we update the model that were being considered
as part of S; next, we update the scenarios of C i.

• Finally, the model of the revised system S rev is obtained from the revised models of
the Ci components; thereupon, we update the requirements and the scenarios of S.

With this procedure, the stakeholders can support their decision to accept or reject the
revision suggestions by the evolutions of the requirements and the scenarios. Obviously,
the simplest revisions—the ones which are suggested first— are those which modify fewer
requirements in fewer components.

It is worth noting that, for simplicity, we take the requirements of S as the union of the
requirements of the Ci components:

Req(S) =
⋃

∀i

Req(Ci)

Being a gray box, the models of S are not obtained through synthesis from its requirements,
but through composition of the models of its components. In consequence, the role of
the requirements is to annotate as much information as possible about the stakeholders’
statements that yielded those models.

4.2. The second discharging procedure: Introduction of a coordinator aspect

The procedure of the preceding section is only applicable when some of the components
of S = C1 . . . |[λ]|M . . . Cn is a white box. One first alternative, which can be applied in

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 13

all cases, is to preserve the original components untouched, and introduce an aspect that
modifies their conjoint behavior according to the results of the integration analyses. Thus,
the system of Eq. (1) is reexpressed as follows, with λ ′ ⊇ λ:

Srev =
(
C1 . . . |[λ]|M . . . Cn

)
|[λ′]|M Coordinator (3)

The transformation from Eq. (1) into Eq. (3) is represented graphically in Fig. 11:

C1 . . . |[λ]|M . . .
Cn

S

C1 . . . |[λ]|M . . .
Cn

S |[λ′]|M
Coordinator

Srev

Figure 11. The second discharging procedure, in the case of Eq. (3).

The Coordinator aspect is obtained by transforming the analyzed model of S accord-
ing to the pseudocode of Algorithm 1. The input to this algorithm (called the reduction
algorithm) is the model of S itself, plus one or several∆s gathered during its analysis. The
output is a MUS model for the aspect, whose characterization is completed with whichever
SCTL expressions considered in the integration analyses.

The algorithm proceeds in four fundamental steps, which can be explained with the
sample run of Fig. 12:

• First, we turn into unspecified all the non-possible events in the input model, to dis-
tinguish them from the events that will become non-possible due to the integration
changes. If the input model is that of Fig. 12(a), we obtain the one of Fig. 12(b).

• Next, we enforce the ∆s over the model, turning into non-possible events that were
either possible or unspecified. In the example, we assume only one ∆ that fixes c as a
non-possible event in state s3; the resulting model is shown in Fig. 12(c).

• The third step consists of an iterative procedure to reduce the model resulting from the
previous step, merging contiguous compatible states, that is, states which are joined
by possible transitions and which do not contain contradictory values of enabledness
for any event (i.e. what is possible in one state cannot be non-possible in the other).
In the model of Fig. 12(c), for instance, it is possible to merge states s 1 and s2, since
they agree on the fact that c can occur, and do not contradict each other regarding a
(possible in s1 and unspecified in s2) or b (vice versa).b

bIn the reduced models, the initial state is the one that subsumes the original s1.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

14 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

Algorithm 1 Reduction of MUS models
Input: One modelMS and a set of∆s with changes of the form sk[a]MS " false.
Output: The model of a coordinator aspect,MCoordinator .

1: Mtemp = MS = (SMtemp , Λ,→).

2: Change the non-possible transitions si
{b,false}−−−−−→ sunsp ∈ → inMtemp for unspecified transi-

tions si
{b,⊥}−−−−→ sunsp.

3: Enforce the changes indicated by the ∆s overMtemp, turning the corresponding possible tran-

sitions si
{b,true}−−−−−→ sj or unspecified transitions si

{b,⊥}−−−−→ sunsp into non-possible transitions,

si
{b,false}−−−−−→ sunsp.

4: Label all the possible transitions inMtemp as non-tested.

5: Select a non-tested transition, Υ ≡ si
{b,true}−−−−−→ sj .

6: Merge the states si and sj inMtemp.
7: If there exists b ∈ Λ such that si[b]Mtemp = true and sj [b]Mtemp = false (or vice versa),

then discard the possibility to merge si and sj , and label Υ as tested.
8: While there exists b ∈ Λ such that si[b]Mtemp = true and sj [b]Mtemp = true, and

Succ(si, b) %= Succ(sj , b),
9: Go to line 6 and try to merge Succ(si, b) and Succ(si, b). If that merging is discarded,

then discard also the merging of si and sj , and label Υ as tested.

10: Modify the origin of all the non-possible transitions sj
{b,false}−−−−−→ sunsp such that

si[b]Mtemp %= true, turning them into si
{b,false}−−−−−→ sunsp.

11: Modify the origin of all the possible transitions sj
{b,true}−−−−−→ sl such that si[b]Mtemp = ⊥,

turning them into si
{b,true}−−−−−→ sl.

12: Remove state sj fromMtemp, changing all the possible transitions into sj for transitions
into si.

13: If there exist non-tested transitions, then start a new iteration from line 5.
14: Otherwise, simplifyMCoordinator = Mtemp, and finish.

The merging of two states turns the possible transitions that joined them into unit
loops. It can also imply merging other states, particularly those which are successors
of the merged ones through the same events. Thus, as shown in Fig. 12(d), the merging
of s1 and s2 implies merging s4 and s5 as well, because these are their respective c-
successors. Finally, although not shown in the example, the state that results from the
merging becomes the destination of all the possible transitions which led into either
one of the merged states.

• Once it is not possible to go on merging states, the model obtained is simplified by
turning unit loops into unspecified transitions, because the events linked to those loops
are not relevant for the integration analysis in question. In the example, once we have
got to Fig. 12(e), it is not possible to merge more states because s1,2,4,5 and s3 con-
tain contradictory values of enabledness for event c. The result can be simplified by
removing the unit loops, which bears the model of Fig. 12(f). Looking at the original
model and the ∆ considered, it is easy to see that event a was indeed irrelevant for the

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 15

s1

s2

s3

s4
a

s5
a

a

b

c

c

c

s1

s2

s3

s4

s5

a

b

c

c

c

∆

s1

s2

s3 c

s4

s5

a

b

c

c

s1,2

s3 cs4,5

bc

a

s1,2,4,5

s3 c

b

a
c

s1,2,4,5

s3 c

b

(a) (b) (c)

(d) (e) (f)

Figure 12. Sample run of the reduction algorithm.

integration analysis: whereas event c was possible in all states, it becomes non-possible
only after event b has occurred.

When the reduction algorithm has finished computing a model for the aspect, the model
of the revised system Srev is computed according to Eq. (3), to check whether it solves
problems detected over S. If the analysis results are not better, we can try with other possi-
ble ways to reduce the model after applying the same ∆s (note the alternatives opened by
line 5 of Algorithm 1), or consider other∆s and their combinations. On the contrary, if the
model of Srev returns better analysis results, the revision procedure finishes by modify-
ing the scenarios of S to reflect the changes made to the system model. The stakeholders’
reasoning about the revision suggestions is mainly supported by the evolutions of those
scenarios, because the requirements and the scenarios of the C i components remain un-
changed.

4.3. The third discharging procedure: Projection of the coordinator aspect over
the components

Having obtained a coordinator aspect through the procedure of Section 4.2, it is always
possible to revise the system S = C1 . . . |[λ]|M . . .Cn by projecting that aspect onto some
or all of the Ci components, thus preserving the original modularization. For example, when
projecting the aspect only onto the first component, the system of Eq. (3) is reexpressed as
follows:

Srev = Crev
1 |[λ′]|M C2 . . . |[λ′]|M . . . Cn, (4)

where

Crev
1 = C1 |[λ′′]|M Coordinator.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

16 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

The transformation from Eq. (1) into Eq. (4) is represented graphically in Fig. 13:

C1 . . . |[λ]|M . . .
Cn

S

Crev
1 |[λ′]|M

C2 . . . |[λ′]|M . . .
Cn

Srev

Figure 13. The third discharging procedure, in the case of Eq. (4).

This revision procedure always turns the modified components into gray boxes, because
part of their functionality arises from the combination with the aspect, and not only from
their requirements through a synthesis process. Nonetheless, for each one of the revised
components, we evaluate the original requirements to update the specifications according
to the following (not mutually exclusive) rules:

• If a requirementR is satisfied in at least one state of the revised model, then it remains
unaltered in the revised set of requirements.

• If a requirementR is violated in at least one state of the revised model, then the revised
set of requirements includes a retrenched versionR∗ that negates the consequent ofR.

Just like in Section 4.2, the sets of requirements of the new gray boxes include any
SCTL expressions considered in the integration analysis. Besides, we revise both the sce-
narios of S and those of the modified components. Again, the scenarios play an important
role to support the stakeholders’ reasoning about the revision suggestions. It is particularly
worth noting that, in cases where the two rules above are applicable, the revised scenarios
help identifying the particular situations where the different versions of the same original
requirement hold.

To finish, note that the simplest revisions according to this procedure—the ones which
are suggested first— are obviously those which modify fewer components.

5. An Application Example

In this section, we illustrate the mechanisms presented in Section 4 to support continuous
integration in SCTL-MUS, applied to the specification of a network with n stations that
transmit data over a shared channel. With no loss of generality, we shall describe the case
n = 2 to avoid the complex graphical representation of the models resulting from the com-
position of more stations. The example shows the different revision possibilities that can
be considered after detecting that the composition of the two stations (originally specified
as white-box components) violates two SCTL properties.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 17

Stationi

(s1, {R1i ,R2i ,R3i})
s1

s2

s3

dati

inii

endi

Figure 14. Initial specification of the stations.

5.1. Starting point

To begin with, we assume that the two stations of the example are originally identical,
thoughwe shall not treat them as instances of a same class anymore—that is, we will allow
modifying the two stations in disparate ways. Their specification involves the following
events, with the corresponding intended meaning:

• dati: Stationi receives new data to transmit over the channel.
• inii: Stationi initiates a transmission.
• endi: Stationi finishes a transmission.

The starting point is a set of requirements by which a station simply receives data and
send them, regardless of the fact that it must use a shared channel:

• “Stationi can initiate a transmission when it has data to send”:
R1iR1iR1i ≡ dati ⇒ ©inii

• “If Stationi initiates a transmission, then it will be able to finish it”:
R2iR2iR2i ≡ inii ⇒ © endi

• “Stationi can receive new data to send after it has finished other transmission”:
R3iR3iR3i ≡ endi ⇒ © dati

Besides, the specification includes the fact that, upon startup, the stations can receive
data to transmit:

• s1[dati] = true

Figure 14 shows the white box that initially represents the stations, including the MUS
model that is synthesized from the aforementioned requirements. Noting that there is no
overlapping between the alphabets of the two stations, the global system Network is ob-
tained by composing them using the |||M operator (that is, |[λ]|M with λ = ∅):

Network = Station1 |||M Station2 (5)

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

18 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

In addition to the requirements, we assume that the stakeholders consider the scenario
E of Fig. 15, which they interpret as “the fact that the Station2 receives data to send before
Station1 does not imply that it will transmit them first”.

t Station1 Station2

dat2

dat1

ini1

end1

Figure 15. E , a scenario for the composition of the two original stations.

The integration analysis in this example consists of verifying two properties to ensure
mutual exclusion in the access to the shared channel, specifying that “one station cannot
initiate a transmision right after the other has started transmitting”:

P1P1P1 ≡ ini1 ⇒ © ¬ini2
P2P2P2 ≡ ini2 ⇒ © ¬ini1

The verification is done over the model MNetwork of Fig. 16, that results from com-
posing the models of the stations according to Eq. (5). c Obviously, both properties are
violated, because the free interleaving of the Station i components allow situations that the
two stations are transmitting at the same time.

The false satisfaction values in state s5 ofMNetwork take the model-checking algorithm
to generate the following pieces of diagnostic information:

∆1,s5 = s6[ini1]MNetwork " false
∆2,s5 = s8[ini2]MNetwork " false (6)

From these ∆s, the revision mechanisms start looking for solutions to the verification
problems, considering the alternatives described in the following subsections.

5.2. Revisions that preserve white boxes

The states of MNetwork correspond directly to states of the models of Station i. Figure 17
shows the requirement revisions that stem from ∆1,s5 following the procedure introduced
in [19]: a retrenchment ofR11 and a refinement ofR22 .

cThe rows and columns of the tables in Fig. 16 —and in the subsequent ones— correspond to the different states
of the graphical representation of the modelMNetwork.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 19

s1
s2 s3

s4
s5 s6

s7 s8
s9

dat1 dat1 dat1

ini1 ini1 ini1

dat2

dat2

dat2

ini2

ini2

ini2

end1 end1 end1

end2

end2

end2

[(, s) |=6 P1]
⊥ ⊥ ⊥
⊥ false ⊥
⊥ ⊥ ⊥

[(, s) |=6 P2]
⊥ ⊥ ⊥
⊥ false ⊥
⊥ ⊥ ⊥

Figure 16. The original model of Network, with the results of verifying P1 and P2.

s1
s2 s3

s4
s5 s6

s7 s8
s9

dat1 dat1 dat1

ini1 ini1 ini1

dat2

dat2

dat2

ini2

ini2

ini2

end1 end1 end1

end2

end2

end2

=

s1

s2

s3

dat1

ini1

end1 |||M

s1

s2

s3

dat2

ini2

end2

R∗
11

R∗
11R∗
11 ≡ dat1 ⇒ ©¬ini1¬ini1¬ini1 R′

22
R′

22R′
22

≡ ini2 ⇒ ©(end2∧¬ini1)∧¬ini1)∧¬ini1)

∆
1,

s 5

∆1,s
5

Figure 17. Revisions of the requirements of Stationi from∆1,s5 .

Assuming that we consider first the retrenchment ofR11 , the revision proceeds by up-
dating the model of the first station to implement the requirements {R ∗

11
,R21 ,R31}. Next,

we update the model of the network, to check that the changes lead to better verification
results for P1 and P2. Figure 18 shows that, indeed, the false satisfaction values disappear,

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

20 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

and so the revision is presented to the stakeholders.d

s1

s2 ini1

dat1

|||M

s1

s2

s3

dat2

ini2

end2 =

s1
s2 s3

s4

ini1

s5

ini1

s6

ini1

dat1 dat1 dat1

dat2

dat2

ini2

ini2

end2

end2

[(, s) |=6 P1]
⊥ ⊥ ⊥
0 0 0
− − −

[(, s) |=6 P2]
⊥ ⊥ ⊥
⊥ true ⊥
− − −

Figure 18. Checking the first revision derived from∆1,s5 .

In this case, the stakeholders immediately reject the suggestion, noticing that the re-
quirement R∗

11
prevents the first station from ever transmitting any data. So, the next re-

vision alternative evaluated is the refinement of R22 into R′
22
. As shown in Fig. 19, this

refinement modifies state s3 of the model of the second station, which in turn affects sev-
eral states of the model of the network. This time, the changes lead to a partial solution of
the verification problems: the false value for P1 persists in s5, but the false value for P2

has been turned into true.
Therefore, the stakeholders are asked about changing the original specification of the

second station for the white box Station1
2 of Fig. 20, reexpressing the system of Eq. (5) as

follows:

Network = Station1 |[ini1]|M Station1
2 (7)

The revision suggestion also includes revisions of the scenario E . The first scenario of
Fig. 21 —a counterexample of E— is obtained from the materializations which are lost
over the traces (s1, s2, s5, s6, s9, s3) and (s1, s2, s3, s6, s9, s3), evidencing that the first
station cannot send data over the channel while the other station is transmitting. The two
other revised scenarios —witnesses of E— stem from the materializations which persist in
the model of the network, characterized by the fact that event ini 2 does not occur before
ini1.

dThe " values in Fig. 18 indicate that there is no point in checking P1 in some states, because its premise is not
satisfied there. As explained in [19], this is obviously not an unwanted verification result.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 21

s1

s2

s3

dat1

ini1

end1 |[ini1]|M

s1

s2

s3 ini1

dat2

ini2

end2 =

s1
s2 s3 ini1

s4
s5

s6
ini1

s7 s8 s9
ini1

dat1 dat1 dat1

ini1 ini1

dat2

dat2

dat2

ini2

ini2

ini2

end1 end1 end1

end2

end2

end2

[(, s) |=6 P1]
⊥ ⊥ 0
⊥ false 0
⊥ ⊥ 0

[(, s) |=6 P2]
⊥ true ⊥
⊥ true ⊥
⊥ true ⊥

Figure 19. Checking the second revision derived from∆1,s5 .

Station1
2

(s1, {R12 ,R′
22

,R32})

s1

s2

s3 ini1

dat2

ini2

end2

Figure 20. A suggestion to revise the second station as a white box.

Interpreting the evolutions of the requirementR ′
22
and the scenario E , the stakeholders

would accept the revision suggestion, because everything is clearly in line with the goal of
ensuring the use of the communications channel in mutual exclusion. Particularly, reading
R′

22
one understands that “if the second station initiates a transmission, then it impedes

transmissions of the first one”.
Now, using ∆2,s5 , we would get to a complete solution to the verification problems

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

22 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

t Station1 Station2

dat2

dat1

ini2

ini1

end2

t Station1 Station2

dat2

ini2

dat1

ini1

end1

t Station1 Station2

dat2

dat1

ini2

ini1

end1

Figure 21. Revisions of scenario E from the transformation of the model of Fig. 16 into that of Fig. 19.

in a completely analogous way, refining R21 intoR′
21

R′
21R′
21

≡ ini1 ⇒ © (end1∧¬ini2∧¬ini2∧¬ini2). The
update of the model of the network is shown in Fig. 22, where it is clear that P 1 and P2 are
no longer violated.

The revision suggestion presented to the stakeholders implies rewriting the system as
follows, using the components represented in Fig. 23:

Network = Station1
1 |[ini1, ini2]|M Station2

2 (8)

We also provide revisions of the scenario E . In addition to the scenarios of Fig. 21, we
provide that of Fig. 24 to notify that the new changes to the model of the network imply
losing the materialization of E over the trace (s1, s2, s5, s8, s9, s3). In sum, the revision
suggestion is clearly acceptable, following the same reasoning that led to accepting the
previous partial solution.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 23

s1

s2

s3 ini2

dat1

ini1

end1

∣∣∣
[
ini1
ini2

]∣∣∣
M

s1

s2

s3 ini1

dat2

ini2

end2 =

s1
s2 s3 ini1

s4
s5

s6
ini1

s7
ini2

s8

ini2

dat1 dat1 dat1

ini1 ini1

dat2

dat2

dat2

ini2

ini2

end1 end1

end2

end2

[(, s) |=6 P1]
⊥ ⊥ 0
true true 0
⊥ ⊥ −

[(, s) |=6 P2]
⊥ true ⊥
⊥ true ⊥
0 0 −

Figure 22. Checking the revision derived from combining ∆1,s5 and∆2,s5 .

Station1
1

(s1, {R11 ,R′
21

,R31})

s1

s2

s3 ini2

dat1

ini1

end1

Station1
2

(s1, {R12 ,R′
22

,R32})

s1

s2

s3 ini1

dat2

ini2

end2

Figure 23. A suggestion to revise the two stations as white boxes.

5.3. Introduction of a coordinator aspect

Having explained the revisions that preserve the white-box character of the stations, we
describe next the suggestions that would be obtained through the procedure of introducing
a coordinator aspect, again from the analysis shown in Fig. 16 and the ∆s of Eq. (6).

The first possibility explored is to apply the changed indicated by ∆ 1,s5 over the orig-
inal model of Network (shown in Fig. 16), and then execute the reduction algorithm. The

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

24 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

t Station1 Station2

dat2

dat1

ini1

ini2

end1

Figure 24. A new revision of scenario E from the transformation of the model of Fig. 16 into that of Fig. 22.

process is illustrated in Fig. 25. Note that the first step of turning non-possible transi-
tions into unspecified ones is not necessary, because the input model does not contain
non-possible transitions.

Once we have obtained the model of the coordinator, we check that, composed with
the model of Network, it improves the verification results of properties P 1 and P2. In this
case, the result coincides with the model of Fig. 19 which, as previously stated, represents
a partial solution to the verification problems. Therefore, the stakeholders are faced with
a revision suggestion that consists of introducing the aspect Coordinator1 of Fig. 26, to
reexpress the system of Eq. (5) as follows:

Network =
(
Station1 |||M Station2

)
|[ini1, ini2, end2]|M Coordinator1 (9)

The aspect being a gray box, the stakeholders’ decision to accept or reject the revision
suggestion can be supported mainly by the evolutions of scenario E , previously shown in
Fig. 21.

From the partial solution, we can find again a complete one by applying ∆ 2,s5 .
The resulting model of the aspect is added to the model extracted before, and the
result is composed with the model MNetwork of Fig. 16 by means of the operator
|[ini1, ini2, end1, end2]|M . We obtain the model of Fig. 22, which, as we already know,
raises no problems with properties P1 and P2. Thus, the stakeholders are faced with a
revision suggestion that consists of introducing the aspect Coordinator2 of Fig. 27, and
reexpressing the system of Eq. (5) as follows:

Network =
(
Station1 |||M Station2

)
|[ini1, end1, ini2, end2]|M Coordinator2 (10)

The stakeholders would note that the revision suggestion is acceptable by looking at
the evolutions of scenario E , which are shown in Figs. 21 and 24. Indeed, it would be easy
for them to recognize Coordinator2 as a mutual exclusion semaphore.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 25

s1
s2 s3

s4
s5 s6

s7 s8
s9

dat1 dat1 dat1

ini1 ini1 ini1

dat2

dat2

dat2

ini2

ini2

ini2

end1 end1 end1

end2

end2

end2

s1
s2 s3

s4
s5 s6

ini1

s7 s8
s9

dat1 dat1 dat1

ini1 ini1

dat2

dat2

dat2

ini2

ini2

ini2

end1 end1 end1

end2

end2

end2

∆1,s5

s1,2

s3

s4,5
s6

ini1

s7,8 s9

dat1 dat1

ini1

ini2

ini2

ini2

end1 end1

end2

end2

end2

dat2

dat2

dat2

s1,2,4,5 s3,6

ini1

s7,8 s9

ini1

ini2

ini2

end1 end1

end2

end2

dat1
dat2

dat2

dat1

s1,2,4,5,7,8 s3,6,9

ini1

ini2

end2dat1
dat2
ini1
end1

dat1
end1

s1,2,4,5,7,8 s3,6,9

ini1

ini2

end2

Figure 25. Running the reduction algorithm over the model of Fig. 16 and∆1,s5 .

Coordinator1

P1,P2

s1 s2

ini1

ini2

end2

Figure 26. A coordinator aspect that leads to a partial solution.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

26 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

Coordinator2

P1,P2

s1

s3

ini1

s2

ini2

ini1 ini2

end1 end2

Figure 27. A coordinator aspect that leads to a complete solution.

Station2
1

(s1, {R11 ,R∗
11

R∗
11R∗
11

,R21 ,R31 ,P1,P2})

s1

s2
ini1

s3
s4

ini1

s5 s6
ini1

dat1 dat1

ini1

ini2

ini2

ini2

end1

end2

end2

end2

end1

Figure 28. A suggestion to revise the first station as a gray box, leading to a partial solution.

5.4. Projection of the coordinator aspect over the components

The third way to discharge integration changes is to turn the stations into gray boxes, by
projecting the coordinator aspect over them. In this case, we would obtain the same partial
solution of Fig. 19 by projecting the aspect Coordinator1 of Fig. 26 over any of the two
stations. For example, choosing the first station, the stakeholders would be asked to change
its specification as a white box for the gray box Station2

1 of Fig. 28, and to reexpress the
system of Eq (5) as follows:

Network = Station2
1 |[ini1, ini2, end2]|M Station2 (11)

It is worth noting that the revised specification for the first station contains both the
original requirement R11 and its retrenched version R∗

11
R∗

11R∗
11

≡ dat1 ⇒ © ¬ini1¬ini1¬ini1. The
reason is that R11 holds in state s1 of the model of Station2

1, whereas R∗
11
holds in s2.

The revisions of scenario E , which coincide with the ones represented in Fig. 21, allow the
stakeholders to identify the particular situations in which any of the two versions holds, i.e.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

Procedures and Algorithms for Continuous Integration in an Agile Specification Environment 27

the situations when the first station can initiate a transmission right after receiving data and
the situations when it cannot.

One step further, the aspect Coordinator2 that results from enforcing∆2,s5 (Figure 27)
can be projected over either Station2

1 or Station1
2 to reach the same complete solution of

Fig. 22. Choosing again the first station, the stakeholders would be asked to change its
specification for the gray box Station3

1 of Fig. 28, and reexpressing the system of Eq. (5) as
follows:

Network = Station3
1 |[ini1, end1, ini2, end2]|M Station2 (12)

Once again, the revision suggestion would include the same evolutions of scenario E
which are shown in Figs. 21 and 24.

Station3
1

(s1, {R11 ,R∗
11

R∗
11R∗
11

,R21 ,R31 ,P1,P2})

s1

s2
ini1

s3 s4
ini1

s5
ini2

dat1 dat1

ini1

ini2

ini2

end1

end2

end2

Figure 29. Another revision of the first station to yield a complete solution.

5.5. Discussion

The preceding example makes it clear that the three revision procedures lead to different
views of a system, enabling great flexibility for the stakeholders to select the most suitable
modularization at any time:

• The procedure to revise white boxes modifies the original components to incorporate
the behavior that they prohibit in others. In Fig. 23, for example, the model of Station 1

1

prevents the second station from initiating a transmission while the first one is trans-
mitting (ini2 is a non-possible event in state s3, where it was originally unspecified).

• On the other hand, the transformation into gray boxes modifies each component to
condition its own behavior to the previous relevant events of the others. In Fig. 29, for
example, the model of Station3

1 shows that the behavior of the first station is modified to
take into account that it cannot initiate transmissions while the second one is occupying

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

28 Martín López-Nores, José J. Pazos-Arias, Jorge García-Duque et al.

the shared channel (i.e. between the occurrences of ini 2 and end2). During that time,
the station can only receive new data to transmit, if it had not already done so.

• Finally, the introduction of an aspect provides the vision of delegating the coordina-
tion of the components to a separate entity, that captures the inherently crosscutting
nature of the P1 and P2 properties. That entity can continue being developed to define
more complex coordination policies, enjoying the best separation of concerns. Note
in Eqs. (9) and (10) that this procedure preserves the original coupling between the
components (reflected in the |||M operator), whereas the revisions that modify them
lead to greater coupling: in Eqs. (7), (8), (11) and (12), |||M is changed for |[ini1]|M ,
|[ini1, ini2]|M , |[ini1, ini2, end2]|M and |[ini1, end1, ini2, end2]|M , respectively.

The procedure to revise white boxes is the one that enables the most extensive rea-
soning for the stakeholders, because the revised requirements still determine the whole
functionality of the components affected. Nonetheless, preserving the white-box character
can imply more changes than strictly necessary in a general case, because the modification
of a requirement affects all the states of the MUS models where its premise is satisfied. The
procedure of the gray boxes provides greater flexibility in this regard, inasmuch as it allows
contradictory versions of a requirement to coexist; however, the stakeholders’ decision is
only supported by evolutions of the scenarios, which is also true for the introduction of a
coordinator aspect. It is also important to note that second and third procedures are always
applicable, whereas the first one can only be applied, obviously, when at least one of the
components of the analyzed system is a white box.

6. Practical Evaluation

Our approach to CI is implemented and running in a development environment that we use
to teach formal methods and software engineering methodologies in postgraduate courses.
Actually, the mechanisms we have implemented correspond to the real-time extension of
SCTL-MUS (described in [12]), in which the events of requirements, models and scenarios
can be possible, non-possible or unspecified depending on specific time instants.

Knowing the intended scope of agile development methodologies (small to medium-
sized projects, reduced teams and short deadlines [1]), we put our mechanisms into prac-
tice by assigning several development projects to postgraduate students, who should work
in groups of three or more people, and with four months (the length of an academic cy-
cle) to complete their work. The assignments involved real-time systems of an average
complexity, excerpts from the Shuttle System case study [14] and NASA’s CTAS air-traffic
control system [31]. These were indeed the same assignments we made to evaluate the agile
mechanisms introduced in [19] with the students of the previous academic year; thus, we
had the opportunity to objectively measure the improvements due to the new mechanisms
for CI.

In these experiments, we have found that the development times were reduced by an
average of nearly 15%. This improvement was certainly due to the fact that, by automating
the discharge of the integration changes, we eliminate the burden of what was formerly
an entirely manual task, with very little methodological support. In turn, this encouraged

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

REFERENCES 29

the students to make integration checks more often, which lead to better quality in the
developed specifications (i.e. fewer errors and non-considered situations).

Not surprisingly, all of the students started out the developments with white-box com-
ponents, and tried to keep them white as long as possible. Thereby, the procedures to revise
white boxes and to introduce coordinator aspects were the most widely used during the
early stages of development,whereas the revision of gray boxes gained importance towards
the latest stages.

7. Conclusions

Continuous integration (CI) is an important practice in agile development, because it pro-
vides for early detecting and resolving problems with the composition of various modular
units of a system. To date, this feature was not conveniently supported by formal specifi-
cation environments, due to the problem of effective loss of modularization. In response
to that, we have introduced a general and flexible approach to integrate CI in an analysis-
revision cycle, with automated support to discharge any changes made at the composition
level into modifications of the original components, or into aspects that capture the cross-
cutting nature of the integration checks. This way, we combine the benefits of handling
modular specifications with the ability to keep emergent behavior under control during all
the development process. Our experiments over the SCTL-MUS methodology have con-
firmed the advantages of this approach in the kind of projects that fall within the agile
scope.

Acknowledgements

This work was funded by the Xunta de Galicia research project PGIDIT04PXIB32201PR.

References

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software development
methods. Review and analysis. VTT Publications, 2002.

[2] K. Altisen, F. Maraninchi, and D. Stauch. Exploring aspects in the context of reactive
systems. In Proc. of the Workshop on Foundations of Aspect-Oriented Languages, in
conjunction with AOSD, Lancaster, UK, Mar. 2004.

[3] S. Ambler. Agile Modeling (AM) home page: Effective practices for modeling and
documentation. http://www.agilemodeling.com/.

[4] H. Baumeister. Combining formal specifications with Test-Driven Development. In
Proc. of the 4th Intl. Conf. on Extreme Programming and Agile Methods, Calgary,
Canada, Aug. 2004.

[5] M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. High-
smith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, K. Schwaber, J. Suther-
land, and D. Thomas. Manifesto for agile software development.
http://agilemanifesto.org/, 2001.

[6] M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf. Extreme programming exam-
ined, chapter Extreme modeling. Addison Wesley, 2001.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

30 REFERENCES

[7] T. Bolognesi. Toward constraint-object-oriented development. IEEE Transactions on
Software Engineering, 26(7):594–616, 2000.

[8] Y. Bontemps, P. Heymans, and P. Schobbens. Lightweight formal methods for
scenario-based software engineering. In Proc. of the Intl. Workshop on Scenarios:
Models, Transformations and Tools, Dagstuhl Castle, Germany, Sept. 2005.

[9] M. Breen. Experience of using a lightweight formal specification method for a com-
mercial embedded system product line. Requirements Engineering, 10:161–172,
2005.

[10] E. Brinksma. Specification modules in LOTOS. In Proc. of the 2nd IFIP TC/WG6.1
Intl. Conf. on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols, Vancouver, Canada, Dec. 1989.

[11] G. Eleftherakis and A. Cowling. An agile formal development methodology. In Proc.
of the 1st South-East European Workshop on Formal Methods, Thessaloniki, Greece,
Nov. 2003.

[12] A. Fernández-Vilas, J. Pazos-Arias, A. Gil-Solla, R. Díaz-Redondo, J. García-Duque,
and B. Barragáns-Martínez. Incremental specification with SCTL/MUS-T: A case
study. Journal of Systems and Software, 70(2):189–208, 2004.

[13] M. Fowler. Continuous integration. http://www.martinfowler.com, 2006.
[14] H. Giese and F. Klein. Autonomous shuttle system case study. Lecture Notes in

Computer Science, 3466:90–94, 2004.
[15] M. Glinz. Improving the quality of requirements with scenarios. In Proc. of the World

Congress for Software Quality, Yokohama, Japan, Sept. 2000.
[16] S. Graf and B. Steffen. Compositional minimization of finite state systems. In Proc. of

the 2nd Intl. Workshop on Computer-Aided Verification, New Brunswick (NJ), USA,
June 1990.

[17] ITU. Message sequence charts. Recommendation Z.120, 1996.
[18] J. Lennox and H. Schulzrinne. Feature Interaction in Telecommunications and Soft-

ware Systems VI, chapter Feature interaction in Internet telephony. IOS Press, 2000.
[19] M. López-Nores, J. Pazos-Arias, J. García-Duque, Y. Blanco-Fernández, R. Díaz-

Redondo, A. Fernández-Vilas, A. Gil-Solla, andM. Ramos-Cabrer. Bringing the agile
philosophy to formal specification settings. Intl. Journal of Software Engineering and
Knowledge Engineering, 16(6):951–986, 2006.

[20] E. Mäkinen and T. Systä. MAS – an interactive synthesizer to support behavioral
modelling in UML. In Proc. of the 23rd Intl. Conf. on Software Engineering, Toronto,
Canada, May 2001.

[21] L. McIness. The agility of lightweight formal methods.
http://www.kuro5hin.org/story/2006/10/11/163923/00, 2006.

[22] R. Milner. Communication and concurrency. Intl. Series in Computer Science. Pren-
tice Hall, 1989.

[23] J. Mogul. Emergent (mis)behavior vs. complex software systems. ACM SIGOPS
Operating Systems Review, 40(4):293–304, 2006.

[24] R. Paige and P. Brooke. Agile formal method engineering. In Proc. of the 5th Intl.
Conf. on Integrated formal Methods, Eindhoven, The Netherlands, Dec. 2005.

June 25, 2007 19:19 WSPC/INSTRUCTION FILE paper

REFERENCES 31

[25] J. Pazos-Arias and J. García-Duque. SCTL-MUS: A formal methodology for software
development of distributed systems: A case study. Formal Aspects of Computing,
13:50–91, 2001.

[26] J. Pazos-Arias, J. García-Duque,M. López-Nores, and B. Barragáns-Martínez. Elicit-
ing requirements and scenarios using the SCTL-MUS methodology. The shuttle sys-
tem case study. ACM Software Engineering Notes, 30(4), 2005.

[27] C. Prehofer. Feature interactions in statechart diagrams or graphical composition of
components. In Proc. of the 2nd Intl. Workshop on Aspect-oriented Modeling with
UML, in conjunction with UML, Dresden, Germany, Oct. 2002.

[28] E. Pulvermueller, A. Speck, J. O. Coplien, M. D’Hondt, and W. de Meuter, editors.
Feature interaction in composed systems. Springer, 2002.

[29] S. Robak and B. Franczyk. Feature interaction and composition problems in software
product lines. In Proc. of the Workshop on Feature Interaction in Composed Systems,
in conjunction with ECOOP, Budapest, Hungary, June 2001.

[30] A. Salah, R. Mizouni, R. Dssouli, and B. Parreaux. Formal composition of distributed
scenarios. In Proc. of the 24th IFIP WG 6.1 Intl. Conf. on Formal Techniques for
Networked and Distributed Systems, Madrid, Spain, Sept. 2004.

[31] B. D. Sanford, K. Harwood, S. Nowlin, H. Bergeron, H. Heinrichs, G. Wells, and
M. Hart. Center/TRACON automation system: Development and evaluation in the
field. In Proc. of the 38th Annual Air Traffic Control Association Conference, Wash-
ington D.C., USA, Sept. 1994.

[32] B. Stepien and L. Logrippo. Feature interaction detection using backward reasoning
with LOTOS. In Proc. of the 14th IFIP WG6.1 Intl. Symposium on Protocol Specifi-
cation, Testing and Verification, Vancouver, Canada, June 1994.

[33] S. Suhaib, D. A. Mathaikutty, S. K. Shukla, and D. Berner. XFM: An incremental
methodology for developing formal models. ACM Transactions on Design Automa-
tion of Electronic Systems, 10(4):589–609, 2005.

[34] C. Thomson and M. Holcombe. Applying XP ideas formally: The story card and
extreme X-machines. In Proc. of the 1st South-East European Workshop on Formal
Methods, Thessaloniki, Greece, Nov. 2003.

[35] S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from
scenarios. In Proc. of the 23rd Intl. Conf. on Software Engineering, Toronto, Canada,
May 2001.

[36] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based spec-
ifications and behavior models using implied scenarios. ACM Transactions on Soft-
ware Engineering and Methodology, 13(1):37–85, 2004.

[37] F. Valles-Barajas. A formal model for a requirements engineering tool. In Proc. of the
ACM SIGSOFT 1st Alloy Workshop, in conjunction with FSE, Portland (OR), USA,
Nov. 2006.

[38] J. Whittle and I. Krüger. A methodology for scenario-based requirements capture.
In Proc. of the Intl. Workshop on Scenarios and State Machines, in conjunction with
ICSE, Edinburgh, UK, May 2004.

